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1. General outline of the course

In [SS58, page 188], it was formulated the so–called Schinzel (H) hypothesis, which can be stated
as follows.

Conjecture 1.1. Let P1, . . . , Ps be polynomials in Z[x], all of degree at least one, satisfying the
following condition.

There is no prime p ∈ Z dividing all values

s∏
i=1

Pi(m), m ∈ Z.

Then, there are infinitely many integers m ∈ Z such that P1(m), . . . , Ps(m) are prime numbers.

The conjecture is, of course, known in the case s = 1 when P1 is a polynomial of degree one; this
is nothing but the classical Dirichlet’s theorem on primes in arithmetic progressions. To the best
of our knowledge, the case s > 1 is completely open.

The goal of these lectures is to explain how Bodin, Debès and Najib have recently proved [BDN20]
the Schinzel hypothesis replacing the ring of integers Z by a polynomial ring A[x1, . . . , xm], where
A is, roughly speaking, a ring where the classical Hilbert’s irreducibility theorem holds.

Lecture one: review of Dirichlet’s theorem on primes in arithmetic progressions

The goal of this first lecture is to briefly review, on the one hand, the main steps in the proof
of the classical Dirichlet’s theorem on primes in arithmetic progressions, and, on the other hand, a
serious and less known attempt done by Murty [MT06] to prove this theorem just generalizing in
a suitable form Euclid’s argument of the infinitude of prime numbers.

Prelude: Dirichlet’s Theorem on prime in arithmetic progressions and generalizations.
Recall that Dirichlet’s Theorem on primes in arithmetic progressions can be stated as follows.

Theorem 1.2 (Dirichlet, 1837). Given positive integers a, d with gcd(a, d) = 1, there are infinitely
many primes of the form a+ nd, where n ∈ N.

In other words, there are infinitely many n ∈ N such that f(n) = a + nd is a prime number,
where f(X) = a+ dX.

The first serious attempt to generalize Dirichlet’s theorem for primes in arithmetic progressions
was given by Bunyakovsky. Bunyakovsky’s conjecture was motivated by the following result.

Proposition 1.3. Let f ∈ Z[X] be a non–constant polynomial. Consider the sequence

f• := {f(n)}n∈Z.

If f• contains infinitely many prime values, then the following assertions hold.

(i) lc(f) > 0, where lc(f) denotes the leading coefficient of f .
(ii) f is irreducible over Q.
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(iii) There is no prime p such that p | f(n) for all n ∈ N.

Conjecture 1.4 (Bunyakovsky, 1857). If conditions (i), (ii) and (iii) hold in Proposition 1.3, then
f• contains infinitely many prime values.

Bunyakovsky’s conjecture is equivalent to this a priori weaker statement.

Conjecture 1.5 (Bunyakovsky’s weak conjecture). For any non–constant f ∈ Z[X] satisfying
conditions (i), (ii) and (iii) of Proposition 1.3, f(n) is prime for at least one positive integer n.

Proof. Assume that Bunyakovsky’s weak conjecture holds. Therefore, there is n ∈ N such that f(n)
is prime. Now, set q(X) := f(X + n). Since f satisfies conditions (i), (ii) and (iii) of Proposition
1.3, q(X) = f(X + n) also satisfies them. Therefore, by Bunyakovsky’s weak conjecture applied to
q we have that there is m > n such that f(m) is prime. In this fashion, we can construct infinitely
many values on which f(n) is prime, as desired. □

50 years later, Dickson generalized Bunyakovsky’s conjecture for the case of more than one
polynomial.

Conjecture 1.6 (Dickson, 1904). Given f1, . . . , fm ∈ Z[X], with deg(fj) = 1 for all 1 ≤ j ≤ n,
assume that each fj satisfies conditions (i), (ii) and (iii) of Proposition 1.3. Assume, in addition,
that, for any prime number p, there is some integer n0 such that p does not divide the product

m∏
i=1

fi(n0).

Then, there are infinitely many positive integers n such that fj(n) is prime for all 1 ≤ j ≤ m.

For this reason, Schinzel hypothesis is sometimes referred as generalized Dickson’s conjecture.

Looking for an Euclidean’s proof of Dirichlet’s Theorem. In order to illustrate the headline
of this part, we plan to develop first a couple of examples.

Example 1.7. We claim that there are infinitely many prime numbers that are congruent to 1 modulo
4. Indeed, suppose, to reach a contradiction, that there are finitely many ones, namely p1, . . . , pk,
where k ≥ 1. Consider the polynomial f(X) = 4x2 + 1, and look at the number N := f(p1 · · · pk).
By the Fundamental Theorem of Arithmetic, there is a prime number q dividing N . Fix one q
prime dividing N . Since q | N , we have that −1 is a square modulo q. This implies, by Gauss
quadratic reciprocity’s law, that q ≡ 1 (mod 4).

Summing up, we have two options. Either N is prime, and therefore is congruent to 1 modulo
4, or N is not prime. In both cases, we get a contradiction because q /∈ {p1, . . . , pk}. In any case,
this gives an infinitude of primes ≡ 1 (mod 4) provided we have at least one. But of course 5 ≡ 1
(mod 4), so we are done. Notice that 12 ≡ 1 (mod 4).

Example 1.8. We claim that there are infinitely many primes that are congruent to 3 modulo 4. In
this case, we repeat the same previous argument, but now with the polynomial g(X) := 4X − 1.
Indeed, assume, to reach a contradiction, that there are finitely many ones, namely p1, . . . , pk,
where k ≥ 1. Since N := g(p1 · · · pk) is odd, N has only two types of prime factors: primes that
are 1 modulo 4, and primes that are 3 modulo 4. Since not all of its prime factors are 1 modulo 4,
there is a prime number q dividing N which is 3 modulo 4 and q /∈ {p1, . . . , pk}. Again, this gives
an infinitude of primes provided there is one, which is of course true because 7 ≡ 3 (mod 4).

Notice that 32 ≡ 1 (mod 4).

So, keeping in mind the above examples, it seems that one way to prove the infinitude of primes
in a concrete arithmetic progression is to use Euclid’s argument for the infinitude of primes, but
choosing first a polynomial which contains these primes, roughly speaking, as divisors.

We formalize this idea by introducing the following classical notion.
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Definition 1.9 (Prime divisors of a polynomial). Let f ∈ Z[X], and let p be a prime number. We
say that p is a prime divisor of f if p divides f(n) for some n ∈ N. In this case, we denote by P (f)
the set of prime divisors of the polynomial f .

The following result, obtained by Schur in [Sch12], may be regarded as a generalization of Euclid’s
argument for the infinitude of prime numbers. A proof can be found for instance in [Hua82, Chapter
5, Theorem 4.2]. See also [MT06, Theorem 2].

Theorem 1.10 (Schur’s Theorem). If f ∈ Z[X] is non–constant, then P (f) is an infinite set.

The next question one might ask is what happens in case we intersect the prime divisors of two
polynomials. This is solved by the following theorem by Nagell. The interested reader in a proof
may like to consult [Nag69, Theorem 3].

Theorem 1.11 (Nagell). If f, g ∈ Z[X] are non–constant polynomials, then P (f)∩P (g) is infinite.

Remark 1.12. As pointed out in [MT06], since the prime divisors of the k–th cyclotomic polyno-
mial consists of the prime divisors of k jointly with the primes that are 1 modulo k we have, as
consequence of Nagell’s Theorem, that for any k ≥ 1, any polynomial has infinitely many prime
divisors that are 1 modulo k.

Keeping in mind Remark 1.12, the following notion seems the best one can expect.

Definition 1.13 (Murty). A Euclidean proof for the arithmetic progression ℓ (mod k) is the
existence of an irreducible polynomial f ∈ Z[X] such that all prime divisors of f , except for finitely
many ones, are either 1 modulo k or ℓ modulo k.

In this way, the main result obtained by Murty was the following one. It characterizes the
arithmetic progressions that admit an Euclidean proof in the above sense.

Theorem 1.14 (Murty). A Euclidean proof exists for the arithmetic progression ℓ (mod k) if and
only if ℓ2 ≡ 1 (mod k).

Lecture two: basics on Hilbertian fields

Hilbert’s irreducibility theorem says that if f ∈ Q[T1, . . . , Tr, X] is an irreducible polynomial,
then there are (a1, . . . , ar) ∈ Qr such that f(a1, . . . , ar, X) ∈ Q[x] remains irreducible. The goal of
this lecture is to formally introduce the so–called Hilbertian fields, namely, fields where the above
statement is also valid. The main reference for this lecture will be [FJ23, Chapter 13].

What is Hilbert’s irreducibility about?

Question 1.15. Let K be a field, let T = T1, . . . , Tr, X = X1, . . . , Xn, and let f ∈ K[T ,X] irreducible.
Are there infinitely many values t = t1, . . . , tr such that f(t,X) ∈ K[X] is irreducible?

One quickly understands that, in order to obtain some positive answers to the above question,
some restrictions are needed.

(i) At least, r ≥ 1. For instance, take f(T,X) = c ∈ K a constant polynomial.
(ii) At least, n ≥ 1. For instance, take f(T,X) = T 2 + T + 2 ∈ Z[T,X]. For any t1 ∈ Z, f(t1, X)

is an even number, so f(t1, X) ∈ Z[X] is reducible.
(iii) Since we want infinite values of the parameters, we need to require that K is infinite.

Keeping in mind the above restrictions, we are ready to introduce the notion of Hilbertian field.

Definition 1.16. Let K be a field, let X = X1, . . . , Xn be variables and T = T1, . . . , Tr be pa-
rameters, (r ≥ 1 and n ≥ 1). Let f = (f1, . . . , fm) ∈ K(T )[X]m (m ≥ 1), where fj ∈ K(T )[X] is
irreducible for all j, and let g ∈ K[T ].



4 A. F.BOIX AND DANNY A. J. GÓMEZ-RAMÍREZ

(i) Set
HK(f, g) := {a = (a1, . . . , ar) ∈ Kr | g(a) ̸= 0, fj(a,X) irreducible ∀j}.

We say that HK(f, g) is a Hilbert subset of Kr.
If, in addition, n = 1, and for any 1 ≤ j ≤ m, fj is separable in X, we say that HK(f, g) is

a separable Hilbert subset of Kr.
(ii) A Hilbert set of K is a Hilbert subset of Kr for some r ≥ 1.
(iii) A separable Hilbert set of K is a separable Hilbert subset of Kr for some r ≥ 1.
(iv) We say that K is Hilbertian provided any separable Hilbert set of K is non–empty.
(v) We say that K is strongly Hilbertian provided any Hilbert set of K is non–empty.

The first thing we plan to exhibit is a large family of fields that are not Hilbertian; namely,
Henselian fields. For more information about Henselian fields, the reader can consult for instance
[EP05, Chapter IV].

Proposition 1.17 (Geyer). No Henselian field is Hilbertian.

Proof. Let (K, v) be a Henselian field with valuation ring (R,m), and choose 0 ̸= λ ∈ m, and a
prime number p ̸= char(K). Consider the irreducible polynomials in K(T )[X]

f(T,X) = Xp + λ · T − 1, g(T,X) = Xp +
1

T
− 1.

Assume, to reach a contradiction, that K is Hilbertian. Therefore, there is 0 ̸= a ∈ K such that
both f(a,X) and g(a,X) are irreducible as elements of K[X]. In particular, none of them has a
zero in K.

However, since K is a valued field, either a ∈ R or 1/a ∈ m. On the one hand, if a ∈ R, then we
have that

f(a, 1) = λ · a ≡ 0 (mod m),
∂f

∂X
(a, 1) = p ̸≡ 0 (mod m).

Therefore, since K is Henselian, we have that f(a,X) has a zero in K, which is a contradiction.
On the other hand, if a−1 ∈ m, then we have that

g(a, 1) = a−1 ≡ 0 (mod m),
∂g

∂X
(a, 1) = p ̸≡ 0 (mod m).

Therefore, since K is Henselian, we have that g(a,X) has a zero in K, which is also a contradiction.
In any case, we end up with a contradiction, hence K can not be Hilbertian. □

Hilbert’s irreducibility theorem: main steps in the proof. The main result of this lecture
is the following:

Theorem 1.18 (Hilbert’s Irreducibility Theorem (HIT)). Q is Hilbertian.

Actually, HIT can be deduced from the a priori weaker form of it.

Theorem 1.19 (HIT in one variable). Let f ∈ Q[T,X] irreducible. Then, there are infinitely many
rational numbers t0 such that f(t0, X) ∈ Q[X] is irreducible.

Actually, this statement can be formulated over the ring of integers, keeping in mind the following
version of Gauss Lemma for polynomials. The reader is referred to [VGR18, Lemma 15].

Lemma 1.20 (Gauss polynomial Lemma). The following assertions hold.

(i) If a monic polynomial in Z[Y ] factors in Q[Y ], then it factors in Z[Y ].
(ii) A polynomial ψ(Y ) divides f ∈ Z[X,Y ] if and only if, upon writing

f(X,Y ) =
n∑

j=0

aj(Y )Xj ,

we have that ψ(Y ) is a factor of each aj(Y ).
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(iii) If ψ(Y ) is irreducible and divides f · g, where g ∈ Z[X,Y ] is written as

g(X,Y ) =

m∑
j=0

bj(Y )Xj ,

then either ψ is a factor of all the aj’s or it is a factor of all the bj’s.
(iv) If f(X,Y ) = g1(X,Y ) · g2(X,Y ), where gj ∈ Q(Y )[X], then it can be factored into the product

of two polynomials in Z[X,Y ].

In this way, keeping in mind Gauss Lemma, Theorem 1.19 can be deduced from the following:

Proposition 1.21. Let f ∈ Z[T,X], f /∈ Z[T ] be irreducible. Then, for an infinite number of
t1 ∈ Z, f(t1, X) ∈ Z[X] is irreducible.

One can prove Proposition 1.21 by contrapositive. The formulation is as follows.

Proposition 1.22 (Main Ingredient). Let g(T, Y ) ∈ Z[T, Y ], g /∈ Z[T ]. Assume that there is t0 ∈ Z
such that, for any t1 ≥ t0, g(t1, Y ) is monic and reducible in Z[Y ]. Then, g ∈ Q[T, Y ] is reducible.

We plan to show here that Proposition 1.22 implies Proposition 1.21. The argument is as follows.

Proof. First of all, writing

f(T,X) =

n∑
j=0

aj(T )X
n−j ,

set

g(T, Y ) := a0(T )
n−1f

(
T,

Y

a0(T )

)
.

Let t1 ≥ t0 be given by Proposition 1.22. Since, by assumption, f(t1, X) factors in Z[X], g(t1, Y )
factors in Q[Y ]. Since g(t1, Y ) is monic, we can apply part (i) of Gauss polynomial lemma to
conclude that g(t1, Y ) also factors in Z[Y ]. Therefore, by applying Proposition 1.22, we have

g(T, Y ) = Ψ1(T, Y ) ·Ψ2(T, Y ), Ψj(T, Y ) ∈ Q[T, Y ].

Substituting back Y = a0(T ) ·X, we obtain

f(T,X) =
Φ1(T,X) · Φ2(T,X)

A · a0(T )n−1
,

where Φj ∈ Z[T,X], A ∈ Z and a0(T ) ∈ Z[T ]. In this way, the conclusion finally follows by part
(iv) of Gauss polynomial Lemma. □

Now, the reader may ask how to prove Proposition 1.22. The whole details can be found in
[Lan83, Chapter 9]. Let us just mention two ingredients necessary for the proof. The first one is a
Mean value Theorem for more than two points; the statement reads as follows.

Theorem 1.23 (Mean Value Theorem for several points). Let φ ∈ Cm([ti, ti+m]), where

ti < ti+1 < . . . < ti+m

are real numbers. Then, there is ti < τ < ti+m such that

φ(m)(τ)

m!
=

∣∣∣∣∣∣∣∣∣
1 ti t2i . . . tm−1

i φ(ti)
1 ti+1 t2i+1 . . . tm−1

i+1 φ(ti+1)
...

...
...

...
...

...
1 ti+m t2i+m . . . tm−1

i+m φ(ti+m)

∣∣∣∣∣∣∣∣∣
Vm

,

where Vm is the Vandermonde determinant attached to the points ti < ti+1 < . . . < ti+m.
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Building upon this Mean Value Theorem for more than two points, one can prove the following
result for Puiseux expansions and density of points, which is the key point to obtain a proof of
Hilbert’s irreducibility Theorem.

Proposition 1.24 (Puiseux expansions and density of points). Let

φ(t) = atn/e + . . .+ b+
c

t1/e
+ . . . ,

where a, b, c ∈ R. Assume that:

(i) φ converges for all sufficiently large values of t.
(ii) φ /∈ R[t].
(iii) There are infinitely many positive integers {ti}i≥0 such that φ(ti) ∈ Z.

Then, there is i0 ∈ Z, a natural number m ≥ 1 and a real number λ ∈ (0,+∞) such that, for any
i > i0, we have

ti+m − ti > tλi .

Remark 1.25. As we have already explained, a detailed account of the proof of Hilbert’s irreducibil-
ity theorem is given in [Lan83, Chapter 9], see also [Ser97, Chapter 8]. A different approach, based
on Hilbert’s original proof, is given in [VGR18].

Lecture three: classic Hilbertian fields and Hilbertian rings

The goal of this lecture is to review the known fact that number fields are Hilbertian. Along the
way, we also to see how the Hilbertian property behaves under algebraic field extensions. The main
reference for this lecture will also be [FJ23, Chapter 13], where the reader can find full details.

Reduction Lemmata. Our first goal is to explain some basics reduction results involving Hilbert
sets.

Lemma 1.26 (First reduction Lemma). Each Hilbert subset HK(f1, . . . , fm; g) ⊂ Kr contains a
Hilbert subset of the form HK(f

′
1, . . . , f

′
m; g′) ⊂ Kr, with, for any 1 ≤ i ≤ m, f ′i ∈ K[T ,X] irreducible

and f ′i /∈ K[T ].

The main reason to look at the First reduction lemma is because of the following statement,
which roughly says that, in order to prove that a field is either Hilbertian or strongly Hilbertian,
it is enough to reduce to the case of one single parameter. The precise statement reads as follows.

Proposition 1.27. Assume that any Hilbert subset HK(f1, . . . , fm; g) ⊂ K with fi ∈ K[T,X] irre-
ducible, is non–empty. Then, any Hilbert set of K is non–empty.

Next, we come to the following reduction lemma, which roughly says that one can reduce to one
single variable.

Lemma 1.28 (Second Reduction Lemma). Any Hilbert subset of K contains a Hilbert set of the
form HK(f1, . . . , fm; g), with fi ∈ K[T,X] and degX(fi) ≥ 1 for any 1 ≤ i ≤ m.

We do not plan to give a full proof of the Second Reduction Lemma, instead we plan to recall
a key ingredient in its proof, the so–called Kronecker substitution, which may be interesting in its
own right.

Definition 1.29. Let R be a unique factorization domain (UFD) with fraction field K, and let
d ≥ 1 be an integer. We consider the map of monoids Nn

0
//N0 given by multiplication by

matrix (
1 d d2 . . . dn−1

)
.
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As usual, this map of free monoids induces the corresponding map of R–algebras

R[Nn
0 ] = R[X1, . . . , Xn] // R[N0] = R[Y ]

Xj 7−→ Y dj−1
1 ≤ j ≤ n.

Now, we restrict this map to the set

SR(n, d) := {f ∈ R[X1, . . . , Xn] : degXj
(f) < d for any 1 ≤ j ≤ n}.

This restriction gives rise to the map SR(n, d)
Sd //SR(1, d

n), which we call the Kronecker substi-
tution.

Full details and properties of the Kronecker substituion can be found for instance in [FJ23,
Chapter 12, §13].

The next reduction lemma says, roughly speaking, that we can remove the polynomial that pops
up in a Hilbert set which only involves the parameters. The precise statement reads as follows.

Lemma 1.30 (Third Reduction Lemma). Let H := HK(g1, . . . , gm;h) ⊂ Kr with gi ∈ K[T ,X],
irreducible and degX(gi) ≥ 1. Then, H contains a Hilbert set of the form HK(f1, . . . , fm) such
that each fj ∈ K[T ,X] is monic in X, irreducible and degX(fi) ≥ 2. In addition, the following
assertions hold.

(i) If g1, . . . , gm are separable in X, then so are f1, . . . , fm.
(ii) If g1, . . . , gm are absolutely irreducible in X, then so are f1, . . . , fm.
(iii) If there is a ∈ Kr such that fi(a,X) has no root in K for all i, then gi(a,X) also has no root

in K.

The main reason to consider the Third Reduction Lemma is given by the following statement.

Proposition 1.31. Suppose that any Hilbert subset of the form HK(f1, . . . , fm), with fj ∈ K[T,X]
monic in X, and degX(fj) ≥ 2 is non–empty. Then, any Hilbert set of K is non–empty.

Hilbertian fields and algebraic extensions. The question we want to tackle now is the follow-
ing:

Question 1.32. Let K ⊂ L be an algebraic field extension. Assume that K is Hilbertian. Under
which conditions we can guarantee that L is Hilbertian?

The first answer is given by the following:

Proposition 1.33 (Hilbertianity and finite separable field extensions). Let K ⊂ L ba a finite,
separable field extension. Then, any separable Hilbert subset of Lr contains a separable Hilbert
subset of Kr. In particular, if K is Hilbertian, then so is L.

Actually, Proposition 1.33 is a particular case of the following more general statement.

Theorem 1.34. Let K ⊂ L be an algebraic field extension with finite separable degree. Then,
any separable Hilbert subset of Lr contains a separable Hilbert subset of Kr. In particular, if K is
Hilbertian, then so is L.

Relation between Hilbertianity and strong Hilbertianity. Our last goal in this part is to
explain the relation between Hilbertian fields and strongly Hilbertian fields. Of course, the two
notions coincide when K is of characteristic zero, so the only difference pops up when K is of prime
characteristic p. Then answer to this question is given by Uchida’s Theorem.

Theorem 1.35 (Uchida). Let p := char(K) > 0. Then, K is strongly Hilbertian if and only if it is
Hilbertian and K ̸= Kp.
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Sketch of proof. We only plan to show one of the two implications. Indeed, assume that K is
strongly Hilbertian, and let f(T,X) = Xp − T . Since K is strongly Hilbertian, there is 0 ̸= a ∈ K
such that Xp − a is irreducible. In particular, a can not be a p–th power of an element of K, hence
K ̸= Kp, as claimed. For full details, see [FJ23, 13.4.3]. □

We end up this section by introducing what a Hilbertian ring is.

Definition 1.36 (Hilbertian rings). Let R be an integral domain with fraction field K. We say that
R is Hilbertian if every separable Hilbert subset of Kr contains elements all of whose coordinates
are in R.

Remark 1.37. Notice that, by definition, any overring of a Hilbertian ring is also Hilbertian.

Lecture four: the Schinzel hypothesis for some polynomial rings

The goal of this lecture is to explain the main steps followed by Bodin, Debès and Najib to prove
Schinzel’s hypothesis for some polynomial rings.

Some preliminary notations. In what follows, R will always denote a UFD with fraction field
K, and let f = f1, . . . , fm ∈ R[X,T ] be irreducible of degree ≥ 1 in T . Moreover, set

Irrn(R, f) := {M ∈ R[X] : fj(X,M(X)) irreducible for all j}.
On the other hand, given d = (d1, . . . , dn) ∈ Nn

0 , set

PolR,n,d := {M ∈ R[X] : degXi
(M) ≤ di for any 1 ≤ i ≤ n}.

Finally, we set
Irrn,d(R, f) := Irrn(R, f) ∩ PolR,n,d .

Fields with the product formula. Our plan now is to review fields having a product formula.

Definition 1.38. Let K be a field, and let ∅ ̸= S be a set of primes p of K with attached absolute
values |·|p. We say that K has the product formula with respect to S if, for any p ∈ S, there is a real
number βp > 0 such that, for any 0 ≤ a ∈ K, |{p ∈ S : |a|p ̸= 1}| <∞, and∏

p∈S
|a|βp

p = 1.

We say that K has a product formula if there is a non–empty set of primes S satisfying the above
conditions.

Our reason to look at fields with the product formula in this context is the following result,
proved by Weissauer in his thesis. The interested reader may like to consult either [FJ23, 17.3.3]
or [BDN20, Theorem 4.6] for details.

Theorem 1.39 (Weissauer). Let R be an integral domain such that its quotient field K has a
product formula. Then, R is a Hilbertian ring.

Main results. Now, we are ready to establish some of the main results concerning the Schinzel
hypothesis for polynomials. The first one involves fields with a product formula [BDN20, Theorem
1.1].

Theorem 1.40. Let R be a UFD such that its quotient field K satisfies a product formula, and
is imperfect if p = char(K) > 0. Let f = f1, . . . , fm ∈ R[X,T ] be irreducible of degree ≥ 1 in T .
Then, for any d ∈ Nn

0 such that

d1 + . . .+ dn ≥
(

max
1≤i≤m

degX(fi)

)
+ 2,

we have that Irrn,d(R, f) is Zariski dense in PolR,n,d.
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Actually, more can be said in the field case.

Theorem 1.41. The set Irrn,d(R, f) is Zariski dense in PolR,n,d for any d ∈ Nn
0 if either one of

the below assertions hold.

(i) R = K is a strongly Hilbertian field.
(ii) R = K is a Hilbertian field and degT (fj) = 1 for any 1 ≤ j ≤ m.

Bonus lecture: applications

One of the interesting applications obtained by Bodin, Dèbes and Najib as consequence of their
results on the Schinzel hypothesis for polynomials is the following polynomial version of the Gold-
bach’s problem, the interested reader may like to consult [BDN20, Corollary 1.5] for details.

Theorem 1.42 (Goldbach’s conjecture for polynomials). Let R be a UFD such that its quotient field
K satisfies a product formula, and is imperfect if p = char(K) > 0. Then, every non–constant poly-

nomial Q ∈ R[X] is the sum of two irreducible polynomials F,G ∈ R[X] with F = a+ bXd1
1 · · ·Xdn

n

(a, b ∈ R) a binomial of degree d1 + . . .+ dn ≤ deg(Q).

Remark 1.43. Unfortunately, the proof of Theorem 1.42 presented in [BDN20] is not constructive,
and it does not provide an explicit description of the Goldbach’s decomposition. We want to
mention here that, in [BGR, Theorem 1.7] we provide an explicit and algorithmic way to express
a polynomial in at least two variables over any field as a sum of at most 2r absolutely irreducible
polynomials, where r is the number of monomials of the polynomial we start with.
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